The use of indirect comparisons to compliment RCT evidence

A practical example

Mudge et al (2005) A comparison of olanzapine versus risperidone for the treatment of schizophrenia: a meta-analysis of randomised clinical trials. International Journal of Psychiatry in Clinical Practice 9 (1): 3-15.

Aim of analysis

- To compare the efficacy, safety and tolerability of olanzapine vs risperidone
 - Efficacy: PANSS, BPRS, CGI-S, QLS
 - Safety: Anticholinergic use
 - Tolerability: withdrawals

Background

- 2x28 week HTH trials of olanzapine vs risperidone used to demonstrate cost-effectiveness for PBS listing in 1997
- CEA supported by
 - Greater number of 'responders'
 - Lower incidence of side effects [extrapyramidal symptoms]
 - Supplemented by an indirect comparator analysis using data from trials of both agents vs haloperidol

3

Background

- Issues with
 - Dose of comparators
 - Goldilocks effect too low, just right and too high
 - Recommended dose of comparators changed over time
 - Short vs longer term trials
 - Clinical effect developed over time
 - Different definitions of a 'responder'
 - Symptomatic improvement
 - Drop out rates (all-cause discontinuation)

4

Methods

- Meta-analysis
 - Analyses grouped into short-term (< 12 weeks) and longer-term (> 12 weeks)
 - Head-to-head comparison using olanzapine vs risperidone studies
 - Indirect comparison using olanzapine vs haloperidol and risperidone vs haloperidol studies
 - Analysis of all doses (1)
 - Limiting to 'clinically relevant' doses (2)

5

Methods

- Head-to-head analysis
 - Standard meta-analysis; performed using RevMan/Meta-View; FEM for non-heterogeneous comparisons; REM for heterogeneous comparisons
- Indirect analysis
 - Standard meta-analysis to compare olanzapine and risperidone with haloperidol; followed by meta-regression

6

Results

- Short-term analysis only
 - Contains both head-to-head and indirect comparisons
- Efficacy outcomes only
 - Weighted mean difference presented for both head-tohead and indirect comparisons
 - Safety/tolerability outcomes used OR for head-to-head comparison and difference (log OR) for indirect comparison, so difficult to show similarities graphically

7

Results

8

Results

9

Summary

- Indirect comparisons are a useful method to compliment head-to-head evidence, particularly when there are few head-to-head trials
- Indirect analysis results were consistent with head-to-head analysis results

Conclusion

- Heterogeneity potentially a greater problem with indirect comparisons compared with head-tohead comparisons
 - Differences between trials both within groups and across groups

APBG

Conclusion

- Heterogeneity in indirect comparisons can be addressed by:
 - 1. Including only trials with similar characteristics as was carried out in this analysis (eg, study duration and dosing)
 - 2. Using techniques such as Bayesian analysis to adjust for potential confounders

